Quantum Hyberboloid and Braided Modules
نویسندگان
چکیده
We construct a representation theory of a “quantum hyperboloid” in terms of so-called braided modules. We treat these objects in the framework of twisted Quantum Mechanics. Résumé Nous construisons une théorie de représentations pour « l’hyperboloïde quantique » en termes de modules tressés. Nous traitons ces objets dans le cadre de la mécanique quantique tordue.
منابع مشابه
Quantum hyperboloid and braided modules
When a quantum hyperboloid is realized, as a three parameter algebra Ah,q, in the usual manner, the following problem arises: what is a ”representation theory” of this algebra? We construct the series of all spin representations of Ah,q, and we discuss a braided version of the orbit method, i.e. a correspondence between orbits in g∗ and g-modules. A braided trace and a braided involution are di...
متن کاملCrossed Modules and Quantum Groups in Braided Categories
Let A be a Hopf algebra in a braided category C. Crossed modules over A are introduced and studied as objects with both module and comodule structures satisfying a compatibility condition. The category DY (C)AA of crossed modules is braided and is a concrete realization of a known general construction of a double or center of a monoidal category. For a quantum braided group (A,A,R) the correspo...
متن کاملBraided modules and reflection equations
We introduce a representation theory of q-Lie algebras defined earlier in [DG1], [DG2], formulated in terms of braided modules. We also discuss other ways to define Lie algebra-like objects related to quantum groups, in particular, those based on the so-called reflection equations. We also investigate the truncated tensor product of braided modules.
متن کاملBraided Geometry and the Inductive Construction of Lie Algebras and Quantum Groups
Double-bosonisation associates to a braided group in the category of modules of a quantum group, a new quantum group. We announce the semiclassical version of this inductive construction.
متن کاملBraided Hopf Algebras Obtained from Coquasitriangular Hopf Algebras
Let (H, σ) be a coquasitriangular Hopf algebra, not necessarily finite dimensional. Following methods of Doi and Takeuchi, which parallel the constructions of Radford in the case of finite dimensional quasitriangular Hopf algebras, we define Hσ , a sub-Hopf algebra of H, the finite dual of H. Using the generalized quantum double construction and the theory of Hopf algebras with a projection, we...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001